
Teaching App Development with Swift

FingerPainter Lesson 3

�

FingerPainter
Lesson 3

Description

Capture point coordinates within the touch event
handlers, and inspect the x and y components of the
touch coordinates using custom breakpoints.

Learning Outcomes

• Recognize how touch events can send multiple
UITouch objects to event handlers.

• Discover how to obtain point coordinates from
UITouch objects.

• Practice using conditional binding and optionals.

• Practice creating custom breakpoint actions to print

console messages.

Vocabulary

Materials

• FingerPainter Lesson 3 Xcode project

Opening

How can we use the touch events to obtain coordinates for drawing?

event set (data structure) Set<UITouch>

UITouch CGPoint optional binding

if let breakpoint

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

FingerPainter Lesson 3

�

Agenda

• Explain that, because iOS can respond to multiple touches (with multiple fingers), a
Set of UITouch objects is passed to touchesBegan:withEvent: and
touchesMoved:withEvent:.

• Update the implementation of touchesBegan:withEvent:.

override func touchesBegan(touches: Set<UITouch>, 
 withEvent event: UIEvent?) {  
 if let touch = touches.first {  
 let point = touch.locationInView(view)  
 // print message with breakpoint here  
 }  
}

• Using the Xcode Documentation and API Reference (⇧⌘0) explore the UITouch
class reference, drawing attention to the locationInView: method.

• Explain that touchesBegan:withEvent: is passed a Set of objects, touches, and how
we call first upon touches to retrieve the first object in the Set.

• Explain that, because first can return nil when called upon an empty Set, optional
binding is used to safely unwrap the optional value that first returns.

• Discuss how all ViewController objects have an inherited view property, and how
the touchesBegan:withEvent: method obtains a CGPoint , representing a coordinate
within the view, from the UITouch object.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the CGPoint
structure.

• Update the implementation of touchesMoved:withEvent:.

override func touchesMoved(touches: Set<UITouch>, 
 withEvent event: UIEvent?) {  
 if let touch = touches.first {  
 let point = touch.locationInView(view)  
 // print message with breakpoint here  
 }  
}

• Discuss how touchesMoved:withEvent: will be called multiple times while the finger
drags across the screen, and how the CGPoint obtained from the touch events can
be used to draw a line from point to point as the finger moves.

• Add custom breakpoints to the bodies of both the touchesBegan:withEvent: and
touchesMoved:withEvent: methods that use a Log Message action to print the x
and y components of the CGPoint, and automatically continue.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

FingerPainter Lesson 3

�

�

• Run the app (⌘R), click the screen to simulate a touch, and observe the coordinates
printed on the console (⇧⌘C). Click and drag on the screen to simulate a finger
moving across the screen, and observe the coordinates printed on the
console(⇧⌘C) by touchesMoved:withEvent:.

Closing

Since we are only simulating a single touch, the touches set only contains one
UITouch object. What do you think happens to the set when we touch the screen with
multiple fingers?

Modifications and Extensions

• Investigate the UIEvent class reference, and add the time of the touches to the

breakpoint log messages.

• Investigate how to detect multiple touches (multiple fingers) on the screen, and print

the locations of each touch on the console.

Resources

Event Handling Guide for iOS http://developer.apple.com/library/ios/documentation/
EventHandling/Conceptual/EventHandlingiPhoneOS/Introduction/Introduction.html

Setting Breakpoint Actions and Options http://developer.apple.com/library/ios/
recipes/xcode_help-breakpoint_navigator/articles/
setting_breakpoint_actions_and_options.html

UIResponder Class Reference https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIResponder_Class/index.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

http://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/Introduction/Introduction.html
http://developer.apple.com/library/ios/recipes/xcode_help-breakpoint_navigator/articles/setting_breakpoint_actions_and_options.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIResponder_Class/index.html

Teaching App Development with Swift

FingerPainter Lesson 3

�

The Swift Programming Language: Collection Types https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
CollectionTypes.html

Set Structure Reference https://developer.apple.com/library/ios/documentation/
Swift/Reference/Swift_Set_Structure/index.html

UITouch Class Reference https://developer.apple.com/library/ios/documentation/
UIKit/Reference/UITouch_Class/index.html

CGGeometry Reference https://developer.apple.com/library/ios/documentation/
GraphicsImaging/Reference/CGGeometry/index.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Set_Structure/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITouch_Class/index.html
https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CGGeometry/index.html

