
Teaching App Development with Swift

Gesturizer Lesson 3

�

Gesturizer 
Lesson 3 

Description

Refactor the label-changing code, and apply a UIView 
animation with a closure to achieve a fade-in effect.


Learning Outcomes

• Recognize duplicate code and refactor common 

operations into a controller helper method.

• Discover the concept of alpha transparency, and plan 

a means of achieving a visual fade-in effect.

• Describe the concept of closures, and recognize Swift 

closure syntax.


Vocabulary


Materials

• Gesturizer Lesson 3 Xcode project

• Closures presentation


refactor Attributes Inspector alpha transparency

UIView closure type annotation

parameter list return type Void

closure body in trailing closure

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�1



Teaching App Development with Swift

Gesturizer Lesson 3

�

Opening

How might we get the label to fade in and then disappear after each gesture?


Agenda

• Discuss the singleTap: and doubleTap: controller methods, and discuss how both 

methods duplicate the work of setting the label text and making the label appear.

• Create a new method called showGestureName:.


func showGestureName(name: String) { 
 gestureName.text = name  
 gestureName.hidden = false  
} 

• Refactor singleTap: and doubleTap: to use the new method.


@IBAction func singleTap(sender: UITapGestureRecognizer) { 
 showGestureName("Tap")  
}  
 
@IBAction func doubleTap(sender: UITapGestureRecognizer) { 
 showGestureName("Double Tap")  
} 

• Run the app (⌘R), and observe that the functionality remains unchanged.

• Discuss how, to achieve a fade in/out effect, the label should start in an invisible, 

fully transparent state, slowly become less transparent, and then fade out again.

• Using Interface Builder, select the text label and open the Attributes Inspector 

(⌥⌘4). Uncheck the Drawing > Hidden attribute, and set the Alpha attribute to 0.

• Explain the nature of alpha transparency as a decimal number between 0 

(transparent) and 1.0 (opaque).

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the UIView class 

reference and the animateWithDuration:animations: class method.

• Discuss how the data type of the animations: parameter of the 
animateWithDuration:animations: class method describes a closure that expects 
no parameters and returns nothing.


• Present the concept of closures.

• Discuss how functions are "named closures."

• Add a makeLabelOpaque method to the ViewController class for changing the alpha 

transparency of the label.


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�2



Teaching App Development with Swift

Gesturizer Lesson 3

�

func makeLabelOpaque() -> Void { 
 gestureName.alpha = 1.0  
} 

• Discuss how the type of the makeLabelOpaque function matches the type of the 
closure that animateWithDuration:animations: expects to receive, but that Swift 
infers a Void return type when a function omits an explicit return type.


• Remove the return type from the makeLabelOpaque method.


func makeLabelOpaque() { 
... 

• Update the implementation of showGestureName: to execute an animation.


func showGestureName(name: String) { 
 gestureName.text = name  
 UIView.animateWithDuration(1.0, animations: makeLabelOpaque)  
} 

• Discuss how the animations: argument is the name of the makeLabelOpaque 
function, and not a function call.


• Run the app (⌘R), tap the screen, and observe the label fade into view.

• Explain how the animateWithDuration:animations: class method receives a closure 

containing code that will affect the animatable properties of the view, such as its 
alpha transparency; and how the method will take care of displaying a smooth, 
animated transition between the view's initial state, and the change made to the 
view within the closure.


• Discuss an alternative to passing a function name as a closure argument: using a 
closure expression.


• Delete the makeLabelOpaque method, and update the call to 
animateWithDuration:animations:, using a closure expression.


UIView.animateWithDuration(1.0, animations: { () -> Void in 
 self.gestureName.alpha = 1.0  
}) 

• Explain the closure expression syntax, including the braces, type annotation, and 
the use of in to separate the type annotation from the body of the closure.


• Discuss how the closure expression can be made more succinct by removing the 
explicit return type.


• Remove the return type from the closure expression.


UIView.animateWithDuration(1.0, animations: { () in 
 self.gestureName.alpha = 1.0  
}) 

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�3



Teaching App Development with Swift

Gesturizer Lesson 3

�

• Explain how Swift also infers an empty parameter list when omitted.

• Remove the empty parameter list and the in keyword from the closure expression.


UIView.animateWithDuration(1.0, animations: { 
 self.gestureName.alpha = 1.0  
}) 

• Explain that Swift supports a shorthand "trailing closure syntax" when the closure is 
the last parameter in a parameter list.


• Refactor the call to animateWithDuration:animations: with a trailing closure.


UIView.animateWithDuration(1.0) { self.gestureName.alpha = 1.0 } 

• Discuss the benefits of the succinctness of the trailing closure syntax.

• Run the app (⌘R), tap the screen, and observe that the fade-in functionality remains 

the same.

• Discuss the visible behavior of the interface as it relates to the code in 
showGestureName: to support the comprehension of animation and closures.


• With the app still running, tap or double tap the screen again, and observe how the 
label no longer fades in for subsequent gestures.


Closing

Why do you think the label stops fading in after the first animation effect?


Modifications and Extensions

• Explore the label's transform attribute, and the CGAffineTransformMakeScale 

structure. Implement a transformation effect that makes the label appear to fade 
into, or out from, the screen.


Resources

The Swift Programming Language: Methods https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html

UIKit User Interface Catalog: About Views https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/UIKitUICatalog/index.html

UIView Class Reference https://developer.apple.com/library/ios/documentation/UIKit/
Reference/UIView_Class/index.html

The Swift Programming Language: Closures https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/UIKitUICatalog/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIView_Class/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

