
Teaching App Development with Swift

NoiseMaker Lesson 3

�

NoiseMaker
Lesson 3

Description

Implement the actions for each button, playing each of
the four sounds.

Learning Outcomes

• Practice implementing controller methods to carry out

interface behavior.

• Explain what URLs are, and discover how the NSURL

class represents a URL.

• Discover how application bundles represent the files

associated with an app, and how the NSBundle class
abstracts the app bundle.

• Practice using the AVAudioPlayer API to play a sound
file.

• Observe Swift error handling syntax and optional
binding, and optional chaining.

Vocabulary

Materials

• NoiseMaker Lesson 3 Xcode project

URL path NSURL

app bundle NSBundle AVAudioPlayer

optional binding try? optional chaining

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

NoiseMaker Lesson 3

�

Opening

How can we use an AVAudioPlayer to play a sound when a button is tapped?

Agenda

• Implement the controller method playGuitar:.

@IBAction func playGuitar(sender: UIButton) { 
 if let url = NSBundle.mainBundle().URLForResource("guitar",  
 withExtension: "wav") {  
 player = try? AVAudioPlayer(contentsOfURL: url)  
 player?.play()  
 }  
}

• Run the app (⌘R), tap the Guitar button, and listen to the guitar sound.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the NSURL and
NSBundle class references.

• Explain that an NSURL represents a path to a particular file or even a network
resource.

• Explain that an NSBundle represents a location of files and resources, and how the
mainBundle method returns the bundle representing the location of the app files and
resources.

• Explain that, because URLForResource:withExtension: returns an NSURL?, optional
binding is necessary to safely unwrap the NSURL before it is passed to the
AVAudioPlayer initializer.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the
AVAudioPlayer init(contentsOfURL:) initializer, and observe that the initializer is
marked with throws.

• Explain that try? is used with the AVAudioPlayer initializer to convert a possible
error to an optional, and that optional chaining is used to safely call the play
method.

• Using the Xcode Documentation and API Reference (⇧⌘0), search the
documentation for initWithContentsOfURL:, and observe how many classes use
this URL idiom.

• Implement the playApplause:, playMonster:, and playBubbles: methods.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

NoiseMaker Lesson 3

�

@IBAction func playApplause(sender: UIButton) { 
 if let url = NSBundle.mainBundle().URLForResource("applause",  
 withExtension: "wav") {  
 player = try? AVAudioPlayer(contentsOfURL: url)  
 player?.play()  
 }  
}  
 
@IBAction func playMonster(sender: UIButton) { 
 if let url = NSBundle.mainBundle().URLForResource("monster",  
 withExtension: "wav") {  
 player = try? AVAudioPlayer(contentsOfURL: url)  
 player?.play()  
 }  
}

@IBAction func playBubbles(sender: UIButton) { 
 if let url = NSBundle.mainBundle().URLForResource("bubbles",  
 withExtension: "wav") {  
 player = try? AVAudioPlayer(contentsOfURL: url)  
 player?.play()  
 }  
}

• Run the app (⌘R), tap on each button, and listen to each sound.

• Tap on each button quickly, observe how the currently playing sound stops, and

how the new sound immediately begins playing.

Closing

Why does one sound stop when another begins playing?

Modifications and Extensions

• Using the OS X Finder, navigate to ~/Library/Developer/CoreSimulator/Devices/

[DEVICE_ID]/data/Containers/Data/Application/[APP_ID]. Ctrl-click
NoiseMaker.app, and select Show Package Contents from the menu. Describe
what you see in relation to application bundles.

• Bind the four buttons to just one controller method that plays a different sound
according to which button is tapped.

• When using one controller method, design an approach to playing a different audio
file based on closures instead of an if or switch statement.

• Explore Swift error handling, and use a do-catch statement when instantiating the
AVAudioPlayer.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

NoiseMaker Lesson 3

�

Resources

Bundle Programming Guide: Accessing a Bundle's Contents http://
developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/
CFBundles/AccessingaBundlesContents/AccessingaBundlesContents.html

NSBundle Class Reference https://developer.apple.com/library/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSBundle_Class/index.html

NSURL Class Reference https://developer.apple.com/library/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html

AVAudioPlayer Class Reference https://developer.apple.com/library/ios/
documentation/AVFoundation/Reference/AVAudioPlayerClassReference/index.html

The Swift Programming Language: If Statements and Optional Binding https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/TheBasics.html#//apple_ref/doc/uid/TP40014097-
CH5-ID333

The Swift Programming Language: Error Handling https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
ErrorHandling.html

The Swift Programming Language: Optional Chaining https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
OptionalChaining.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

http://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFBundles/AccessingaBundlesContents/AccessingaBundlesContents.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSBundle_Class/index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVAudioPlayerClassReference/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID333
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html

