
Teaching App Development with Swift

NoiseMaker Lesson 6

�

NoiseMaker
Lesson 6

Description

Extract the AVAudioPlayer? property initialization out of
the playback methods and into and initializer.

Learning Outcomes

• Analyze existing code to determine the frequency of

unnecessary object instantiation.

• Practice implementing an initializer.

• Describe the need for variables and optionals, based

on initializer behavior.

Vocabulary

Materials

• NoiseMaker Lesson 6 Xcode project

• Initialization presentation

instantiation initialization initializer

init variable var

optional optional binding

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

NoiseMaker Lesson 6

�

Opening

How many times are AVAudioPlayer objects created when we play sounds with our
app?

Agenda

• Discuss the existing implementation of the NoiseMaker model.

• Discuss how a new AVAudioPlayer object is instantiated every time a "play" method

is called.

• Discuss how the AVAudioPlayer instantiations can be reduced, by creating each
AVAudioPlayer object once, when a NoiseMaker object is created.

• In the NoiseMaker class, extract the AVAudioPlayer instantiations into a new
initializer.

init() { 
 if let url = NSBundle.mainBundle().URLForResource("guitar",  
 withExtension: "wav") {  
 guitarPlayer = try? AVAudioPlayer(contentsOfURL: url)  
 }  
 if let url2 = NSBundle.mainBundle().URLForResource("applause",  
 withExtension: "wav") {  
 applausePlayer = try? AVAudioPlayer(contentsOfURL: url2)  
 }  
 if let url3 = NSBundle.mainBundle().URLForResource("monster",  
 withExtension: "wav") {  
 monsterPlayer = try? AVAudioPlayer(contentsOfURL: url3)  
 }  
 if let url4 = NSBundle.mainBundle().URLForResource("bubbles",  
 withExtension: "wav") {  
 bubblesPlayer = try? AVAudioPlayer(contentsOfURL: url4)  
 }  
}

• Present the concept of initialization.

• Discuss how each AVAudioPlayer? property needs to remain a variable and optional,

since the initializer will not assign a property a value if the conditional binding fails.

• Update each "play" method such that they only call the play method on each

respective AVAudioPlayer? property.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

NoiseMaker Lesson 6

�

func playGuitarSound() { 
 guitarPlayer?.play()  
}  
 
func playApplauseSound() { 
 applausePlayer?.play()  
}  
 
func playMonsterSound() { 
 monsterPlayer?.play()  
}  
 
func playBubblesSound() { 
 bubblesPlayer?.play() 
}

• Run the app (⌘R), and tap the buttons to play each sound.

• Discuss how the controller instantiates the NoiseMaker model once, and how the
NoiseMaker model instantiates each of its AVAudioPlayer? properties only once.

• Discuss how tapping each button no longer instantiates a new AVAudioPlayer
before playing each sound.

Closing

Repetitive code is often referred to as a "code smell." What repetitive code do you
smell? How do you think we can reduce the repetitive code in our model?

Modifications and Extensions

• Implement a custom initializer called initWithSoundFileNames: that receives an

array of sound file names, and uses the file names in the array to prepare each
AVAudioPlayer? property. Refactor the existing initializer to use
initWithSoundFileNames: as the designated initializer.

• Observe how the app has four buttons, four controller actions, four model methods,
and four AVAudioPlayer? properties. Investigate how the text property of each
button might be used to prepare the AVAudioPlayer? properties and to cause the
respective AVAudioPlayer object to play the appropriate sound.

Resources

Cocoa Core Competencies: Model Object http://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

http://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

Teaching App Development with Swift

NoiseMaker Lesson 6

�

The Swift Programming Language: Initialization https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
Initialization.html

The Swift Programming Language: Classes and Structures https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ClassesAndStructures.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Initialization.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

