
Teaching App Development with Swift

RSSReader Lesson 4

�

RSSReader
Lesson 4

Description

Add labels to the controller views, and bind the view
controllers to a custom view controller implementation.

Learning Outcomes

• Analyze app behavior to identify opportunities to

encapsulate common code reuse.

• Practice adding interface components to a view, and

establishing auto layout constraints.

• Practice adding a new controller class to an Xcode

project, and binding it to view controllers in a
storyboard.

• Practice declaring and connecting controller outlet
properties.

• Observe how ARC declaration modifiers allude to
object ownership within a property declaration.

• Practice modifying outlet properties with controller code.

Vocabulary

Materials

• RSSReader Lesson 4 Xcode project

class definition image view auto layout constraint

identity inspector storyboard scene outlet

property declaration modifier
implicitly unwrapped

optional

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

RSSReader Lesson 4

�

Opening

How might we build our four views while minimizing repetitive code?

Agenda

• Discuss how each view controller will present the title, artist, and image of a top

song, album, app or movie.

• Discuss the possibility of implementing individual TopSong, TopAlbum, TopApp and

TopMovie controller classes, and how each controller definition would perform the
same work but with different data.

• Using Interface Builder and the Object Library (⌥⌘L), drag a Text Label onto the Top
Song view, change the contents of the label to Title, and use the Attributes
Inspector (⌥⌘4) to customize the text alignment and font. Control-drag upwards
from the label to the view to add constraints for the vertical spacing and horizontal
alignment; and use the menu item Editor > Resolve Auto Layout Issues > Update
Frames (⌥⌘=) to match the size constraint.

• Using Interface Builder and the Object Library (⌥⌘L), drag a second text label onto
the Top Song view, change the contents of the label to Artist, and use the Attributes
Inspector (⌥⌘4) to customize the alignment and font. Control-drag from the Artist
label to the Title label to establish a vertical spacing constraint; control-drag from
the Artist label to the view to add a horizontal alignment constraint; and use the
menu item Editor > Resolve Auto Layout Issues > Update Frames (⌥⌘=) to match
the size constraint.

• Using Interface Builder and the Object Library (⌥⌘L), drag an Image View onto the
Top Song view, position the image centered, below the Artist label. Use the Size
Inspector (⌥⌘5) to set the height and width of the image view to 200x200.

• Add constraints to the image view by Control-dragging from the image view to the
Artist label to add a vertical spacing constraint; Control-dragging downwards from
the label to the main view to add a horizontal alignment constraint; and use the Pin
control (�) to add constraints for the width and height.

�

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

RSSReader Lesson 4

�

• Run the app (⌘R) observe the labels appear, and discuss how the image view is
empty because no image has been assigned to it for display.

• Select the three interface elements by ⌘-clicking each of them, copy and paste the
three elements to the Top Album view, and center the group of elements at the top
of the view.

• Discuss how constraints between the elements are preserved, but the constraints
relative to the containing view must be recreated.

• Add constraints by Control-dragging upwards from the Title label to the containing
view to add a vertical spacing constraint and a horizontal alignment constraint;
Control-drag upwards from the Artist label to the containing view to establish a
horizontal alignment constraint; and Control-drag downwards from the image view
to the containing view to add a horizontal alignment constraint.

• Run the app (⌘R), interact with the Top Song and Top Album tabs, and observe the
labels appear.

• Duplicate the copying and pasting of the labels and image view to the Top App and
Top Movie scenes, and establish the appropriate constraints.

• Run the app (⌘R), interact with all of the tabs, and observe the labels appear.

• Add a new class (⌘N) to the project called TopMediaController that extends
UIViewController.

import UIKit 
 
class TopMediaController: UIViewController { 
 
 override func viewDidLoad() {  
 super.viewDidLoad()  
 }  
 
}

• Using Interface Builder, select each view controller, and use the Identity Inspector
(⌥⌘3) to set the Class attribute to TopMediaController.

• Discuss how one controller class will encapsulate the retrieval of RSS data, with
four separate instances of the controller that will update their respective views.

• Within the TopMediaController implementation declare three outlet properties for
the user interface components.

class TopMediaController: UIViewController { 
 
 @IBOutlet weak var titleLabel: UILabel!  
 @IBOutlet weak var artistLabel: UILabel!  
 @IBOutlet weak var imageView: UIImageView!  
 ...

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

RSSReader Lesson 4

�

• Discuss that the properties use the weak declaration modifier because the parent
view, and not the controller itself, "owns" the labels and image view; and that the
properties are implicitly unwrapped optional types, because the controller does not
assign values to the properties during initialization.

• Using Interface Builder and the Document Outline (�), expand the contents of each
scene, and Control drag connections from each controller to their respective
interface components. For example, Control-drag a connection from the Top Song
controller to its Title label, and select the titleLabel outlet; demonstrate repeating
the action with each controller and its interface components.

• In the TopMediaController implementation, update viewDidLoad to modify the
titleLabel text.

override func viewDidLoad() { 
 super viewDidLoad()  
 titleLabel.text ="Media Title"  
}

• Run the app (⌘R), interact with the tabs, and observe how each Title label appears
with the contents Media Title.

Closing

Why do each of our views display the same title? If we want to use code to change
the label text differently in each view, do we need four different controller classes?

Modifications and Extensions

• Use Interface Builder to create a container view that holds the text labels and image

view, and rebuild the interface by re-establishing constraints for the interface
components relative to the container view, and between the container view and the
main view in each scene. Copy and paste the container view to the different scenes,
and determine what constraints are preserved, and what constraints must be
created within each scene.

• Rather than using Interface Builder to create repetitive views, encapsulate the
interface in your own UIView child class, representing a container for the labels and
image view. Instantiate your custom view in the controller viewDidLoad method, and
compare your approach with one that just uses Interface Builder.

Resources

Cocoa Application Competencies for iOS: Storyboard https://developer.apple.com/
library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html

Teaching App Development with Swift

RSSReader Lesson 4

�

View Controller Catalog for iOS: Tab Bar Controllers https://developer.apple.com/
library/ios/documentation/WindowsViews/Conceptual/ViewControllerCatalog/
Chapters/TabBarControllers.html

Xcode Overview: Build a User Interface https://developer.apple.com/library/ios/
documentation/ToolsLanguages/Conceptual/Xcode_Overview/
edit_user_interface.html

Auto Layout Guide: Working with Constraints in Interface Builder https://
developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
AutolayoutPG/WorkingwithConstraints/WorkingwithConstraints.html

Interface Builder Help: Creating an Outlet Connection https://developer.apple.com/
library/ios/recipes/xcode_help-IB_connections/chapters/CreatingOutlet.html

The Swift Programming Language: Classes and Structures https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ClassesAndStructures.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

The Swift Programming Language: Weak References https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
AutomaticReferenceCounting.html#//apple_ref/doc/uid/TP40014097-CH20-ID53

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�5

https://developer.apple.com/library/ios/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/TabBarControllers.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/edit_user_interface.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/WorkingwithConstraints/WorkingwithConstraints.html
https://developer.apple.com/library/ios/recipes/xcode_help-IB_connections/chapters/CreatingOutlet.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html#//apple_ref/doc/uid/TP40014097-CH20-ID53

