
Teaching App Development with Swift

SpaceAdventure Lesson 14

�

SpaceAdventure 
Lesson 14 

Description

Decrease the coupling between the SpaceAdventure class and the PlanetarySystem. 
Extract the PlanetarySystem creation into main.swift.


Welcome to the Solar System! 
There are 8 planets to explore. 
What is your name? 
Jane 
Nice to meet you, Jane. My name is Eliza, I'm an old friend of Siri. 
Let's go on an adventure! 
Shall I randomly choose a planet for you to visit? (Y or N) 
N 
Name the planet you would like to visit. 
Neptune 
Traveling to Neptune... 
Arrived at Neptune. A very cold planet, furthest from the sun.


Learning Outcomes

• Recognize potential design constraints in existing code.

• Practice refactoring, to improve existing code without changing functionality.

• Practice writing property declarations, initializers and instantiating objects.

• Distinguish mutability and immutability with var and let.


Vocabulary


Materials

• SpaceAdventure Lesson 14 Xcode project


initializer property declaration type annotation

parameter decoupling mutability

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�1



Teaching App Development with Swift

SpaceAdventure Lesson 14

�

Opening

When the kind of planetary system changes, why does the code in SpaceAdventure 
have to change? How close of a relationship would you say the SpaceAdventure class 
has with the specific PlanetarySystem object it uses?


Agenda

• Discuss how the SpaceAdventure initializer includes a significant amount of planet 

data (names and descriptions) and explicitly relies on creating one kind of 
PlanetarySystem.


• Discuss how one might improve the design of the SpaceAdventure class, by 
providing its initializer with a particular PlanetarySystem to explore; and by 
extracting the planet data from the existing initializer.


• Update the SpaceAdventure initializer in three steps. First, extract the existing code 
within the SpaceAdventure initializer, by moving it to the top of main.swift.


import Foundation 
 
// TODO: Reduce repetitive code 
let mercury = Planet(name: "Mercury", description: "A very hot 
 planet, closest to the sun.")  
... 
planetarySystem.planets.append(mercury) 
... 
let adventure = SpaceAdventure() 
adventure.start() 

• Modify the SpaceAdventure planetarySystem property declaration by removing the 
assignment of the default PlanetarySystem object.


class SpaceAdventure { 
 
 let planetarySystem: PlanetarySystem  
 ... 

• Explain why the planetarySystem property now requires a type annotation, as no 
value is explicitly assigned to it yet.


• Update the SpaceAdventure initializer to accept a PlanetarySystem parameter, 
assigning it to the planetarySystem property.


init(planetarySystem: PlanetarySystem) { 
 self.planetarySystem = planetarySystem  
} 

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�2



Teaching App Development with Swift

SpaceAdventure Lesson 14

�

• Explain how the initializer receives a PlanetarySystem object, and assigns it to the 
planetarySystem property.


• Update the implementation of main.swift to prepare an array of Planet objects, 
create a PlanetarySystem, and then pass the PlanetarySystem object to the 
SpaceAdventure initializer.


// TODO: Reduce repetitive code. 
let mercury = Planet(name: "Mercury", description: "A very hot 
 planet, closest to the sun.")  
... 
let systemName = "Solar System" 
var planets = [Planet]() 
 
planets.append(mercury) 
... 
planets.append(neptune) 
 
let solarSystem = PlanetarySystem(name: systemName, planets: planets) 
let adventure = SpaceAdventure(planetarySystem: solarSystem) 

• Run the program (⌘R) to verify that the functionality remains the same.

• Discuss how the SpaceAdventure class is now decoupled from the "Solar System" 
PlanetarySystem, and how any PlanetarySystem can be passed to the 
SpaceAdventure initializer.


• Discuss how the PlanetarySystem planets array property should no longer be 
mutable, since a PlanetarySystem initializer should be provided a complete Planet 
array during initialization.


• Update the PlanetarySystem planets property declaration, replacing var with let.


class PlanetarySystem { 
 let name: String  
 let planets: [Planet]  
 ... 

• Discuss how the Planet data no longer remains buried within the SpaceAdventure 
class, and allude to how it may be extracted even further, to exist outside the code 
entirely.


• Run the program (⌘R) to verify that the functionality remains the same.


Closing

What about that TODO reminding us to reduce the repetitive code? Is there any kind of 
pattern you see in the code? How do you think we might be able to improve this?


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�3



Teaching App Development with Swift

SpaceAdventure Lesson 14

�

Modifications and Extensions

• Create multiple PlanetarySystem and SpaceAdventure objects, and modify the 

program to allow the user to embark on multiple adventures; or to choose which 
planetary system to travel to.


• Investigate the concept of dependency injection, and determine how it applies to 
the new SpaceAdventure class.


• Investigate how to store the planetary system name and planet data in an external 
property list (or "plist") file. Update the program such that the data is loaded 
externally, rather than existing as literal String values within the code.


Resources

The Swift Programming Language: About Swift https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/

The Swift Programming Language: A Swift Tour https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html

The Swift Programming Language: The Basics https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

Swift Standard Library Reference: Array https://developer.apple.com/library/ios/
documentation/General/Reference/SwiftStandardLibraryReference/Array.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

The Swift Programming Language: Collection Types https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
CollectionTypes.html

The Swift Programming Language: Initialization https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
Initialization.html

The Swift Programming Language: Mutability of Collections https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/CollectionTypes.html#//apple_ref/doc/uid/
TP40014097-CH8-ID106


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/Array.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Initialization.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html#//apple_ref/doc/uid/TP40014097-CH8-ID106

