
Teaching App Development with Swift

Stopwatch Lesson 5

�

Stopwatch
Lesson 5

Description

Use an NSTimer to frequently update the elapsed time
label.

Learning Outcomes

• Discover how an NSTimer is used to execute methods

outside of the interface run loop.

• Relate the concept of a selector to a method name

represented as a String value.

• Understand the importance of NSTimer invalidation.

• Practice writing conditional statements and accessing

object properties.

Vocabulary

Materials

• Stopwatch Lesson 5 Xcode project

• Run Loops and NSTimer presentation

Opening

How can we continuously update the display of the elapsed time while the stopwatch
is running?

run loop NSTimer selector

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

Stopwatch Lesson 5

�

Agenda

• Review the use case of continuously updating the label, and the technical flaw of

using a loop in the startButtonTapped: controller action to continuously update the
label.

• Present the concept of run loops and the NSTimer class.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the NSTimer

class reference.

• Fix the previous implementation of startButtonTapped: to use an NSTimer that will

call updateElapsedTimeLabel: once a second.

@IBAction func startButtonTapped(sender: UIButton) { 
 print("Starting stopwatch")  
 NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,  
 selector: "updateElapsedTimeLabel:", userInfo: nil, repeats: true)  
 stopwatch.start()  
}

• Discuss the arguments passed to the
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: method.

• Explain what a selector is, and how Swift allows the passing of a String that
corresponds with the name of the method that will be invoked.

• Implement the updateElapsedTimeLabel: method.

func updateElapsedTimeLabel(timer: NSTimer) { 
 print("updating...")  
 elapsedTimeLabel.text ="\(stopwatch.elapsedTime)"  
}

• Run the app (⌘R), tap the Start button, and observe the elapsed time label
changing.

• Tap the Stop button, observe the label change to 0.0, and observe how the console
(⇧⌘C) indicates that the NSTimer is still repeatedly calling updateElapsedTimeLabel:.

• Discuss how the updateElapsedTimeLabel: method should not update the label if
the Stopwatch is not running.

• Update the implementation of updateElapsedTimeLabel: to check the state of the
Stopwatch model.

func updateElapsedTimeLabel(timer: NSTimer) { 
 print("updating...")  
 if stopwatch.isRunning {  
 elapsedTimeLabel.text = "\(stopwatch.elapsedTime)"  
 }  
}

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

Stopwatch Lesson 5

�

• Run the app (⌘R), tap the Start button, tap the Stop button, and observe that the
label does not update while the Stopwatch is stopped. Observe how the console
(⇧⌘C) indicates that the NSTimer still repeatedly calls updateElapsedTimeLabel:.

• Explain the best practice of invalidating an NSTimer when it is no longer needed,
how an NSTimer passes itself to the designated selector, and the significance of the
timer parameter of updateElapsedTimeLabel:.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the NSTimer
invalidate method.

• Invalidate the NSTimer in updateElapsedTimeLabel:.

func updateElapsedTimeLabel(timer: NSTimer) { 
 print("updating...")  
 if stopwatch.isRunning {  
 elapsedTimeLabel.text = "\(stopwatch.elapsedTime)"  
 } else {  
 timer.invalidate()  
 }  
}

• Run the app (⌘R), tap the Start button, observe the console (⇧⌘C) and the elapsed
time label changing. Tap the Stop button, and notice the console output has
ceased.

Closing

What would happen if we changed the numeric time interval passed to
scheduledTimerWithTimeInterval:? What would happen if we used an invalid
selector name for the selector argument?

Modifications and Extensions

• Investigate the purpose of the userInfo parameter of
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:.

Resources

NSTimer Class Reference https://developer.apple.com/library/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSTimer_Class/Reference/NSTimer.html

Cocoa Application Competencies for iOS: Main Event Loop https://
developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-
CocoaApp/MainEventLoop.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSTimer_Class/Reference/NSTimer.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/MainEventLoop.html

Teaching App Development with Swift

Stopwatch Lesson 5

�

Threading Programming Guide: Run Loops https://developer.apple.com/library/ios/
documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/
RunLoopManagement.html

Using Swift with Cocoa and Objective-C: Objective-C Selectors https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
BuildingCocoaApps/InteractingWithObjective-CAPIs.html#//apple_ref/doc/uid/
TP40014216-CH4-XID_40

The Swift Programming Language: Conditional Statements https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ControlFlow.html#//apple_ref/doc/uid/TP40014097-
CH9-ID127

Start Developing iOS Apps Today: Finding Information https://developer.apple.com/
library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/RunLoopManagement.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html#//apple_ref/doc/uid/TP40014216-CH4-XID_40
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ControlFlow.html#//apple_ref/doc/uid/TP40014097-CH9-ID127
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

