
Teaching App Development with Swift

UnitConverter Lesson 2

�

UnitConverter
Lesson 2

Description

Set the main view controller as the picker view data
source.

Learning Outcomes

• Recognize the dependencies of interface components,

such as UIPickerView.

• Define Swift protocols and relate them to object-

oriented interfaces.

• Apply a protocol adoption in Swift.

• Experiment with protocol method implementations to

observe how they affect the caller.

• Recognize the Swift external parameter name syntax.

Vocabulary

Materials

• UnitConverter Lesson 2 Xcode project

• Picker Views presentation

• Protocols presentation

connection well UIPickerView protocol

object-oriented interface protocol adoption Issue Navigator

UIPickerViewDataSource method prototype implementation

external parameter name

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

UnitConverter Lesson 2

�

Opening

What does the picker view need in order to do its job?

Agenda

• Run the app (⌘R) and observe that the picker is unpopulated with the California city

names.

• Present the picker view, and the need for a data source and delegate.

• Using Interface Builder, set the main View Controller as the picker view datasource

by Control-clicking on the picker view, and dragging a connection from the
dataSource connection well to the View Controller in the Document Outline (�).

• Run the app, observe the crash, and inspect the console output:
"[UnitConverter.ViewController numberOfComponentsInPickerView:]: unrecognized
selector sent to instance."

• Discuss how the picker view's data source is the view controller, but the
ViewController class does not yet implement the methods that conform to the
UIPickerViewDataSource protocol.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the
UIPickerViewDataSource Protocol Reference and the methods
numberOfComponentsInPickerView: and pickerView:numberOfRowsInComponent:.

• Add the UIPickerViewDataSource protocol declaration to the controller class.

class ViewController: UIViewController, UIPickerViewDataSource {

• Present the concept of protocols.

• View the Issue Navigator (⌘4), and notice the warnings indicating the methods

necessary for conforming to the UIPickerViewDataSource protocol.

• Implement numberOfComponentsInPickerView: and
pickerView:numberOfRowsInComponent:.

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int { 
 return 1  
}  
 
func pickerView(pickerView: UIPickerView, numberOfRowsInComponent 
 component: Int) -> Int {  
 return 10  
}

• Explain the use of the external parameter name in the
pickerView:numberOfRowsInComponent: method and the need to include the name
when calling the method.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

UnitConverter Lesson 2

�

• Explain how the picker view will call these methods to determine how many
flickable components it has and how many rows are in the picker view.

• Run the app (⌘R), and observe that the picker has one scrollable element that
contains ten rows.

• Experiment with different return values for numberOfComponentsInPickerView: (e.g.,
3) and pickerView:numberOfRowsInComponent: (e.g., 2 or 20). Run the app (⌘R) to
observe how the picker view changes based on the return values from these two
protocol methods.

• Discuss the relationship between the two protocol methods and the picker view.

Closing

Why do you think the picker view itself does not determine how many components
and rows it contains?

Modifications and Extensions

• Add the picker view as a UIPickerView property in the ViewController class, and

set its dataSource with code in viewDidLoad.

Resources

UIKit User Interface Catalog: Picker Views https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/UIKitUICatalog/UIPickerView.html

UIPickerView Class Reference https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIPickerView_Class/

UIPickerViewDataSource Protocol Reference https://developer.apple.com/library/ios/
documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/

The Swift Programming Language: Protocols https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html

Core Cocoa Competencies: Protocol https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/Protocol.html

The Swift Programming Language: External Parameter Names https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/Functions.html#//apple_ref/doc/uid/TP40014097-
CH10-ID167

Start Developing iOS Apps Today: Finding Information https://developer.apple.com/
library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/UIKitUICatalog/UIPickerView.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPickerView_Class/
https://developer.apple.com/library/ios/documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/Protocol.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Functions.html#//apple_ref/doc/uid/TP40014097-CH10-ID167
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

