
Teaching App Development with Swift

UnitConverter Lesson 4

�

UnitConverter
Lesson 4

Description

Introduce an array of temperature values for the picker
view to display.

Learning Outcomes

• Explain the array data structure and create an array

using initializer syntax.

• Analyze errors due to incorrect array indexing and

formulate corrections to the cause of such errors.

• Practice writing control flow statements.

• Relate for loops to for-in loops, and recognize the

Swift range syntax.

• Observe how map transforms a range of values into an

array.

Vocabulary

Materials

• UnitConverter Lesson 4 Xcode project

array property access level modifier

private mutability string interpolation

for loop for-in loop range

closure

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

UnitConverter Lesson 4

�

Opening

How can we provide the picker view with a range of Celsius values?

Agenda

• Discuss the need for a "list" of negative and positive Celsius temperatures for the

picker view to display. Consider the total number of values (how many possible
temperatures?), and the range (what minimum and maximum temperatures?).

• In the controller, add a private property for an Array of temperature values that the
controller will provide to the picker view for display.

private var temperatureValues = [Int]()

• Discuss the syntax of the property default value, using var to indicate mutability,
and the significance of making the property private.

• Implement a naive, temporary assignment of the temperatureValues property during
viewDidLoad.

override func viewDidLoad() { 
 super.viewDidLoad()  
 temperatureValues = [1, 2, 3, 4, 5]  
}

• Update the implementation of pickerView:titleForRow:forComponent:.

func pickerView(pickerView: UIPickerView, titleForRow row: Int, 
 forComponent component: Int) -> String? {  
 let celsiusValue = temperatureValues[row]  
 return "\(celsiusValue)°C"  
}

• Explain how an Int is obtained from the array, and is interpolated within the
returned String? value.

• Run the app (⌘R), observe the values displayed in the picker, and flick the picker
one row at a time until the app crashes.

• Observe the console error "fatal error: Array index out of range."

• Discuss the meaning of the error, which describes how the picker selected a row,

called pickerView:titleForRow:forComponent:, but the row index was outside of
the bounds of the temperatureValues array.

• Update pickerView:titleForRow:forComponent: to use the size of the
temperatureValues array to inform the picker of how many rows to display.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

UnitConverter Lesson 4

�

func pickerView(pickerView: UIPickerView, 
 numberOfRowsInComponent component: Int) -> Int {  
 return temperatureValues.count  
}

• Run the app (⌘R), observe the temperature values, and interact with the picker.

• Discuss strategies for creating a range of temperature values, from -100 to 100,

contrasting explicit array initialization([-100, -99, …, 99, 100]) with programmatic
initialization using a loop.

• Modify viewDidLoad to naively populate the temperatureValues array with a loop.

override func viewDidLoad() { 
 super.viewDidLoad()  
 let lowerBound = -100  
 let upperBound = 100  
 for var index = lowerBound; index <= upperBound; ++index {  
 temperatureValues.append(index)  
 }  
}

• Discuss the C-style for loop and the Array append method.

• Run the app (⌘R), observe the temperature values in the picker, and interact with

the picker.

• Discuss how the loop "counts" from lowerBound to upperBound, appending each

value of index to the temperatureValues array.

• Replace the C-style for loop in viewDidLoad with a for-in loop.

for index in -100...100 { 
 temperatureValues.append(index)  
}

• Explain the range syntax and how the for-in loop iterates over the range of
numbers -100 through 100, assigning each value to index during each repetition of
the loop.

• Discuss how map might be used to transform a range into an array of Int values.

• Explain the concept of the map function.

• Update the temperatureValues property declaration and remove the procedural

temperature value generation from viewDidLoad.

private let temperatureValues = (-100...100).map { $0 } 
 
override func viewDidLoad() { 
 super.viewDidLoad()  
}

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

UnitConverter Lesson 4

�

• Explain how the map function iterates over each value in the range, and the use of
the $0 symbol to refer to the value passed to the closure.

• Run the app (⌘R), and observe the temperature values in the picker.

• Discuss how the creation of the temperatureValues array is now more concise, and

how the property declaration no longer relies on a mutable Array.

Closing

Now that we have a range of temperature values to select, what specific steps
should we take to display the converted temperature?

Modifications and Extensions

• Rewrite the map call to use an explicit constant and in rather than the $0 symbol.

• Instead of calling map as a member function of the range, use the free function map,

passing it the range as its first argument.

Resources

View Controller Programming Guide for iOS: Resource Management in View
Controllers http://developer.apple.com/library/ios/#featuredarticles/
ViewControllerPGforiPhoneOS/ViewLoadingandUnloading/
ViewLoadingandUnloading.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

The Swift Programming Language: Access Control https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
AccessControl.html

The Swift Programming Language: Collection Types https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
CollectionTypes.html

UIPickerViewDataSource Protocol Reference https://developer.apple.com/library/ios/
documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/

The Swift Programming Language: Control Flow https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
ControlFlow.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/ViewLoadingandUnloading/ViewLoadingandUnloading.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html
https://developer.apple.com/library/ios/documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ControlFlow.html

