
Teaching App Development with Swift

UnitConverter Lesson 6

�

UnitConverter
Lesson 6

Description

Extract the controller’s unit conversion code into a
UnitConverter model.

Learning Outcomes

• Describe the model-view-controller pattern and

distinguish the responsibilities of the model and
controller.

• Construct a model by creating a Swift class.

• Practice declaring properties and writing method

definitions.

• Reorganize code in model and controller

implementations.

• Integrate a model, view and controller to complete an

app feature.

Vocabulary

Materials

• UnitConverter Lesson 6 Xcode project

• Model-View-Controller presentation

Model-View-Controller model separation of concerns

encapsulation class definition property

access control modifier private method

parameter return type string interpolation

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

UnitConverter Lesson 6

�

Opening

What should the responsibilities of the controller be?

Agenda

• Discuss the existing controller code, and indicate how it seems to be concerned

with displaying temperature values and converting temperature.

• Present the concept of Model-View-Controller.

• Discuss how models are Swift classes that encapsulate something in the problem

domain, such as unit conversion.

• Add a new Swift class (⌘N) to the project for a UnitConverter model.

import Foundation 
 
class UnitConverter { 
 
}

• Discuss why the temperature conversion code in the controller
pickerView:didSelectRow:inComponent: method belongs in the model.

• Add a degreesFahrenheit: method to the UnitConverter class.

func degreesFahrenheit(degreesCelsius: Int) -> Int { 
 return Int(1.8 * Float(degreesCelsius) + 32.0)  
}

• Explain the components of the method signature, including the method name,
return type, parameter name and parameter type.

• In the ViewController class, declare a new private property for a UnitConverter
object.

private let converter = UnitConverter()

• Discuss the choice to declare the property private and how the default property
value is assigned during controller initialization.

• Update the pickerView:didSelectRow:inComponent: method to use the
UnitConverter degreesFahrenheit: method.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

UnitConverter Lesson 6

�

func pickerView(pickerView: UIPickerView, didSelectRow row: Int, 
 inComponent component: Int) {  
 let degreesCelsius = temperatureValues[row]  
 temperatureLabel.text =  
 "\(converter.degreesFahrenheit(degreesCelsius))°F"  
}

• Discuss how the degreesFahrenheit: method call is used within the string
interpolation.

• Run the app (⌘R), select a temperature, and observe the converted value.

• Discuss how the model now encapsulates the temperature conversion; and how the

controller is now concerned with obtaining a temperature value from the picker
view, obtaining a converted temperature from the model, and updating the view.

Closing

Should the controller be concerned with being the picker view dataSource? Should
the UnitConverter model handle this? Why or why not?

Modifications and Extensions

• Refactor the body of pickerView:didSelectRow:inComponent: into a single

statement. Consider long lines of code and decide whether or not the code has
become more or less readable.

• Add a degreesCelsius property to the UnitConverter, and replace the
degreesFahrenheit: method with a computed property.

Resources

Start Developing iOS Apps Today: Using Design Patterns https://
developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/
DesignPatterns.html

Cocoa Core Competencies: Model-View-Controller https://developer.apple.com/
library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html

Cocoa Core Competencies: Model Object https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

The Swift Programming Language: Access Control https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
AccessControl.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPatterns.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html

Teaching App Development with Swift

UnitConverter Lesson 6

�

The Swift Programming Language: Classes and Structures https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ClassesAndStructures.html

The Swift Programming Language: Methods https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html

