
Teaching App Development with Swift

UnitConverter Lesson 8

�

UnitConverter
Lesson 8

Description

Extract the responsibilities of the
UIPickerViewDataSource protocol from the controller
into the TemperatureRange view model.

Learning Outcomes

• Construct a model by implementing a class definition.

• Reorganize code in model and controller

implementations to establish a separation of
concerns.

• Practice adopting protocols and implementing class
methods to conform to a protocol.

• Practice creating outlet connections to controller
properties.

Vocabulary

Materials

• UnitConverter Lesson 8 Xcode project

import inheritance protocol adoption

NSObject UIPickerViewDataSource outlet connection

@IBOutlet property

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

UnitConverter Lesson 8

�

Opening

What changes do we need to make to the controller and our new view model to
satisfy the temperature picker?

Agenda

• Discuss the changes necessary for enabling the TemperatureRange view model to

act as the picker view's dataSource.

• Change the TemperatureRange class import statement to provide access to the
UIPickerViewDataSource type.

import UIKit

• Update the TemperatureRange class to inherit from NSObject and to adopt the
UIPickerViewDataSource protocol.

class TemperatureRange: NSObject, UIPickerViewDataSource {

• Explain why the inheritance hierarchy of the UIPickerViewDataSource protocol
motivates the need to inherit from NSObject.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the NSObject
class.

• Remove the UIPickerViewDataSource protocol adoption from the ViewController
class definition.

class ViewController: UIViewController, UIPickerViewDelegate {

• Move the temperatureValues property out of the controller and into the
TemperatureRange class. Remove the private access control modifier, and shorten
its name to values.

let values = (-100...100).map { $0 }

• Explain why the property is no longer private, because code in other files will need
to access the values property.

• Discuss the semantic redundancy of a TemperatureRange temperatureValues
property and the decision to shorten the property name.

• Move the controller methods numberOfComponentsInPickerView: and
pickerView:numberOfRowsInComponent: into the TemperatureRange class, and
replace the reference to temperatureValues with values.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

UnitConverter Lesson 8

�

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int { 
 return 1  
}  
 
func pickerView(pickerView: UIPickerView, 
 numberOfRowsInComponent component: Int) -> Int {  
 return values.count  
}

• View the ViewController class, and observe the red error indicators.

• Discuss the causes of the red error indicators in the ViewController class and plan

the remaining controller changes.

• Discuss how the controller methods pickerView:titleForRow:forComponent: and
pickerView:didSelectRow:inComponent: also need access to the view model.

• Using Interface Builder and the Assistant Editor (⌥⌘↩), Control-drag an outlet
connection from the TemperatureRange object to the controller class, to create a
new property.

@IBOutlet var temperatureRange: TemperatureRange!

• Update the controller methods pickerView:titleForRow:forComponent: and
pickerView:didSelectRow:inComponent: to use the new temperatureRange property,
replacing references to temperatureValues with temperatureRange.values.

func pickerView(pickerView: UIPickerView, titleForRow row: Int, 
 forComponent component: Int) -> String? {  
 let celsiusValue = temperatureRange.values[row]  
 return "\(celsiusValue)°C"  
}  
 
func pickerView(pickerView: UIPickerView, didSelectRow row: Int, 
 inComponent component: Int) {  
 let degreesCelsius = temperatureRange.values[row]  
 temperatureLabel.text =  
 "\(converter.degreesFahrenheit(degreesCelsius))°F"  
}

• Run the app (⌘R), select a temperature, and observe the converted value.

• Discuss the remaining controller code, and how it only manages communication

between the view and the models, and updates the view.

Closing

What about the user experience of our app? What problems do you see?

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

UnitConverter Lesson 8

�

Modifications and Extensions

• Extract the remaining UIPickerViewDelegate methods into another view model

object, and refactor the controller to use both the separate delegate and data
source. Analyze the benefits and drawbacks to this approach.

Resources

The Swift Programming Language: Protocols https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html

UIKit User Interface Catalog: Picker Views https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/UIKitUICatalog/UIPickerView.html

UIPickerView Class Reference https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIPickerView_Class/

UIPickerViewDataSource Protocol Reference https://developer.apple.com/library/ios/
documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/index.html

Delegates and Data Sources http://developer.apple.com/library/ios/documentation/
general/conceptual/CocoaEncyclopedia/DelegatesandDataSources/
DelegatesandDataSources.html

Cocoa Core Competencies: Model Object https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

The Swift Programming Language: Classes and Structures https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ClassesAndStructures.html

Xcode Overview: Connecting User Interface Objects to Code https://
developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/
Xcode_Overview/edit_user_interface.html#//apple_ref/doc/uid/TP40010215-CH6-
SW3

Interface Builder Connections Help: Creating an Outlet Connection https://
developer.apple.com/library/ios/recipes/xcode_help-IB_connections/chapters/
CreatingOutlet.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/UIKitUICatalog/UIPickerView.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPickerView_Class/
https://developer.apple.com/library/ios/documentation/iPhone/Reference/UIPickerViewDataSource_Protocol/index.html
http://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/edit_user_interface.html#//apple_ref/doc/uid/TP40010215-CH6-SW3
https://developer.apple.com/library/ios/recipes/xcode_help-IB_connections/chapters/CreatingOutlet.html

