
Teaching App Development with Swift

Clock Lesson 4

�

Clock 
Lesson 4 

Description

Leverage iOS notifications and observers to display the 
correct time when the app is started and brought to the 
foreground.


Learning Outcomes

• Recognize the concept of notifications in the iOS 

platform.

• Apply NSNotificationCenter and an observer to 

perform behavior during application life cycle events.

• Compare the approach of using notifications with 

other explicit means of event handling.

• Combine Swift parameters into multi-parameter 

method calls.

• Define selector, and compose a method call that 

expects a selector argument.


Vocabulary


notification observer NSNotificationCenter

parameter function arity refactor

observer registration selector object life cycle

memory management deinitializer deinit

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�1



Teaching App Development with Swift

Clock Lesson 4

�

Materials

• Clock Lesson 4 Xcode project

• Notifications presentation


Opening

How can we tell the app to update the displayed time when the app enters the 
foreground?


Agenda

• Present the concepts of NSNotificationCenter, notifications, and observers.

• Discuss the difference between internal application notifications and app 

notifications for end users.

• Explore the NSNotificationCenter class reference, its defaultCenter class method 

and the addObserver:selector:name:object: method.

• Register the controller as an observer in viewDidLoad.


NSNotificationCenter.defaultCenter().addObserver(self, 
 selector: "updateTimeLabel",  
 name: UIApplicationWillEnterForegroundNotification,  
 object: nil) 

• Discuss parameterized Swift method syntax, and how to keep long method calls 
readable with formatting.


• Discuss the meaning of calling the addObserver:selector:name:object: method 
and the significance of the passed arguments.


• Explain the concept of selectors.

• Implement the controller updateTimeLabel method.


func updateTimeLabel() { 
 let formatter = NSDateFormatter()  
 formatter.timeStyle = .ShortStyle  
 timeLabel.text = formatter.stringFromDate(clock.currentTime)  
} 

• Refactor viewWillAppear: to update the initial displayed time.


override func viewWillAppear(animated: Bool) { 
 super.viewWillAppear(animated)  
 updateTimeLabel()  
} 

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�2



Teaching App Development with Swift

Clock Lesson 4

�

• Run the app (⌘R) and use the Simulator to send the app to the background (⇧⌘H). 
Wait until the OS X menu bar time indicator has changed, and bring the app to the 
foreground. Observe that the time is current.


• Experiment with using an invalid selector name when registering an observer in 
viewDidLoad. Run the app (⌘R), send the app to the background (⇧⌘H), bring the 
app to the foreground, and observe the app crashing. Restore the correct selector 
name.


• Explain the best practice of unregistering observers when an application quits or is 
"destroyed" from memory.


• Unregister the observer in a deinitializer.


deinit { 
 NSNotificationCenter.defaultCenter().removeObserver(self)  
} 

• Explain the deinitializer's role in object life cycles and iOS memory management.

• Discuss how the app delegate has no controller-related responsibilities, and how 

the view controller encapsulates the coordination of updating the view.


Closing

What happens when you run the app for longer than a minute? Does the time update 
itself? How do we continuously update the display with the current time?


Modifications and Extensions

• Explore the ability to observe additional app life cycle notifications using 
NSNotificationCenter.


Resources

Cocoa Core Competencies: Notification https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/Notification.html

Notification Programming Topics: Registering for a Notification https://
developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/
Articles/Registering.html

NSNotificationCenter Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSNotificationCenter_Class/
index.html


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�3

https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/Notification.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/Articles/Registering.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSNotificationCenter_Class/index.html


Teaching App Development with Swift

Clock Lesson 4

�

Using Swift with Cocoa and Objective-C: Objective-C Selectors https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
BuildingCocoaApps/InteractingWithObjective-CAPIs.html#//apple_ref/doc/uid/
TP40014216-CH4-XID_40

The Swift Programming Language: Deinitialization https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
Deinitialization.html

The Swift Programming Language: Automatic Reference Counting https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/AutomaticReferenceCounting.html


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html#//apple_ref/doc/uid/TP40014216-CH4-XID_40
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Deinitialization.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html

