
Teaching App Development with Swift

Clock Lesson 5

�

Clock
Lesson 5

Description

Use NSTimer to execute a method repeatedly, to keep
the currently displayed time correct. Deprecate the use
of notifications and observers for this feature.

Learning Outcomes

• Define what a feature requirement is.

• Assimilate user expectations and feature

requirements.

• Interpret what threads and run loops are, and relate

them to NSTimer.

• Use NSTimer to execute a method repeatedly without

blocking the main run loop.

• Apply forced unwrapping to unwrap an optional

property value.

Vocabulary

Materials

• Clock Lesson 5 Xcode project

• Run Loops and NSTimer presentation

feature requirement user experience run loop

thread blocking NSTimer

class method optional optional binding

timer invalidation

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

Clock Lesson 5

�

Opening

How often do we want the displayed time to update, and how might we continuously
update the displayed time?

Agenda

• Discuss how a person would use the Clock app and what the experience should be.

Discuss the main flaw in the app: time is only updated when bringing the app into
the foreground, and the displayed time does not continuously change while the app
is running.

• Present the concept of run loops, threads and the NSTimer class.

• Add a new controller property for an NSTimer.

var timer: NSTimer?

• Discuss how the timer property is declared as an optional, because the
ViewController initializer will not initialize the property.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the NSTimer
class reference and its
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: class
method.

• Replace the observer registration in viewDidLoad with the creation of an NSTimer
that will call updateTimeLabel every second.

override func viewDidLoad() { 
 super.viewDidLoad()  
 timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,  
 selector: "updateTimeLabel", userInfo: nil, repeats: true)  
}

• Discuss the meaning of the arguments passed to
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:.

• Modify the updateTimeLabel method's format of the displayed time, such that it
displays seconds.

func updateTimeLabel() { 
 let formatter = NSDateFormatter()  
 formatter.timeStyle = .MediumStyle  
 timeLabel.text = formatter.stringFromDate(clock.currentTime)  
}

• Replace the observer removal in the deinitializer with an invalidation of the timer.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

Clock Lesson 5

�

deinit { 
 if let timer = self.timer {  
 timer.invalidate()  
 }  
}

• Explain the best practice of invalidating a scheduled timer in a deinitializer, and how
the optional binding of the timer property ensures that its value is not nil before
calling invalidate.

• Run the app (⌘R) and observe that it continuously displays the current time.

Closing

What happens when we rotate the app (⌘→) in the Simulator?

Modifications and Extensions

• Consider how the updating of time is a model concern, and refactor the updating of

the model's time as a property that is continuously updated with an NSTimer internal
to the model. Use key-value observing to then update the label when the model's
time changes.

Resources

iOS App Programming Guide: The Main Run Loop https://developer.apple.com/
library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/
TheAppLifeCycle/TheAppLifeCycle.html#//apple_ref/doc/uid/TP40007072-CH2-
SW14

Start Developing iOS Apps Today: Finding Information https://developer.apple.com/
library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

NSTimer Class Reference https://developer.apple.com/library/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSTimer_Class/index.html

Threading Programming Guide: Run Loops https://developer.apple.com/library/ios/
documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/
RunLoopManagement.html

Timer Programming Topics https://developer.apple.com/library/ios/documentation/
Cocoa/Conceptual/Timers/

The Swift Programming Language: Optional Binding https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID333

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html#//apple_ref/doc/uid/TP40007072-CH2-SW14
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSTimer_Class/index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/RunLoopManagement.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Timers/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID333

