
Teaching App Development with Swift

Flashcards Lesson 3

�

Flashcards
Lesson 3

Description

Add a Deck model to the project that encapsulates a
collection of Flashcard objects.

Learning Outcomes

• Practice defining models as Swift classes with

properties.

• Describe the purpose of initializers and initialization

best practices.

• Describe the structure and behavior of dictionaries.

• Practice using a Swift for-in loop to iterate over a

collection of objects.

• Practice expressing different forms of closure

expressions with map.

Vocabulary

Materials

• Flashcards Lesson 3 Xcode project

• Initialization presentation

model property initialization

dictionary key-value dictionary literal

for-in transformation map

closure expression type annotation

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

Flashcards Lesson 3

�

Opening

How might we model a collection of flashcards?

Agenda

• Discuss the need for a Deck model, representing a collection of Flashcard objects.

• Add a new (⌘N) Deck class to the project.

class Deck { 
 
}

• Discuss how the Deck model will manage a collection of Flashcard objects, but the
controller will use methods to "ask" a Deck for a card, rather than accessing the
collection of Flashcard objects directly.

• Add a private [Flashcard] property to the Deck class.

private var cards = [Flashcard]()

• Discuss why the cards property is private, to hide how the Deck class manages the
collection of Flashcard objects.

• Discuss how initializing a Deck should fill the cards array with a collection of
Flashcard objects.

• Implement the Deck initializer, using a dictionary of term-definition pairs for
Flashcard objects.

init() { 
 let cardData = [ 
 "controller outlet" : "A controller view property, marked with  
 IBOutlet.",  
 "controller action": "A controller method, marked with IBAction,  
 that is triggered by an interface event."  
]  
 for (term, definition) in cardData {  
 cards.append(Flashcard(term: term, definition: definition))  
 }  
}

• Present the concept of initialization, if necessary.

• Explain how the initializer creates a dictionary of term-definition pairs using the

Swift dictionary literal syntax.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

Flashcards Lesson 3

�

• Explain the Swift for-in loop, and how each key-value pair in the cardData
dictionary is assigned to the implicit term and definition constants for each
iteration of the loop.

• Discuss how, for each iteration of the for-in loop, the term and definition values
are used to instantiate a Flashcard object, which is then appended to the cards
array.

• Discuss how the initializer is transforming an array of flashcard data into an array of
Flashcard objects, which is an opportunity for using map.

• Replace the for-in loop with a verbose call of map.

cards = cardData.map( 
 { (term: String, definition: String) -> Flashcard in  
 return Flashcard(term: term, definition: definition)  
 })

• Explain how the map function is passed a closure expression; and how map invokes
the closure for each key-value pair in the dictionary, builds an array with each
returned Flashcard object, and assigns the resulting array to the cards property.

• Explain how Swift can infer the type of the closure expression from the data type of
the cardData dictionary and the cards array.

• Refactor the map call, removing the explicit type annotations.

cards = cardData.map({ term, definition in 
 return Flashcard(term: term, definition: definition)  
})

• Explain that, because the closure expression only contains one statement, Swift
also infers an implicit return.

• Refactor the map call, removing the explicit return.

cards = cardData.map({ term, definition in 
 Flashcard(term: term, definition: definition)  
})

• Explain that, because the closure expression is the last argument to map, we can
use the Swift trailing closure expression syntax; and explain how Swift provides
shorthand argument names, removing the need for the explicit term and definition
arguments.

• Refactor the map call, using a trailing closure expression and shorthand argument
names.

cards = cardData.map { Flashcard(term: $0, definition: $1) }

• Discuss how the succinct map call compares to the for-in loop.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

Flashcards Lesson 3

�

• Discuss how, because the initializer no longer appends Flashcard objects to the
mutable cards array property, the property can now be constant.

• Modify the cards property declaration to a constant, without a default value.

private let cards: [Flashcard]

• Discuss how the cards property declaration no longer instantiates an empty
[Flashcard] array, since the initializer uses map to assign the property its
[Flashcard] value.

Closing

What are the differences between an array and a dictionary?

Modifications and Extensions

• Investigate how to store dictionaries of String values inside a property list (.plist)

file. Store a collection of flashcard terms and definitions in a property list, so the
values are not explicitly hard-coded in the Deck initializer. Think about how the app
can load the data once, and pass the data as a dictionary to the Deck initializer.

Resources

Cocoa Core Competencies: Model Object https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

The Swift Programming Language: Classes and Structures https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ClassesAndStructures.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

The Swift Programming Language: Initialization https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
Initialization.html

The Swift Programming Language: Collection Types https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
CollectionTypes.html

The Swift Programming Language: Control Flow https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
ControlFlow.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Initialization.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ControlFlow.html

Teaching App Development with Swift

Flashcards Lesson 3

�

The Swift Programming Language: Closures https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�5

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

