
Teaching App Development with Swift

Flashcards Lesson 4

�

Flashcards
Lesson 4

Description

Add the Deck model to the Term Controller, and update
the interface with a random card drawn from the Deck.

Learning Outcomes

• Discover how to bind a view controller in Interface

Builder to a class implementation.

• Practice declaring properties and implementing

methods.

• Analyze code to identify potential causes of runtime

errors.

• Recognize how Swift optionals can represent the

presence or absence of a value.

• Distinguish a computed property from a method.

• Apply the optional binding syntax with if let.

Vocabulary

Materials

• Flashcards Lesson 4 Xcode project

Opening

What steps do we need to take to integrate a Deck with the Term Controller?

identity inspector property method

optional computed property optional binding

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

Flashcards Lesson 4

�

Agenda

• Using Interface Builder and the Document Outline (�), select the Term Controller

and use the Identity Inspector (⌥⌘3) to reveal the binding to the custom
ViewController class.

• Explain how each individual view controller in the storyboard can be associated with
a specific class within the project.

• Discuss the naming inconsistency of Term Controller in the storyboard, and the
ViewController class name.

• Using the Project Navigator (⌘1), rename ViewController.swift to
TermController.swift, and update the class name to TermController.

class TermController : UIViewController {

• Using Interface Builder and the Document Outline (�), select the Term Controller
and use the Identity Inspector (⌥⌘3) to change the Custom Class to
TermController.

• Add a Deck property to the TermController class.

let deck = Deck()

• Discuss how the TermController viewDidLoad method will draw a random
Flashcard from the deck, and use that Flashcard term property to update the text
label.

• Add a naive randomCard method to the Deck class.

func randomCard() -> Flashcard { 
 let randomIndex = Int(arc4random_uniform(UInt32(cards.count)))  
 return cards[randomIndex]  
}

• Explain the necessary type conversion for the UInt32 argument expected by
arc4random_uniform, and the need to convert its return value to an Int, to subscript
the array.

• Discuss whether or not the randomCard method would return a Flashcard object
when the deck is empty, and cards.count is 0.

• Improve the randomCard method with an optional return type.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

Flashcards Lesson 4

�

func randomCard() -> Flashcard? { 
 if cards.isEmpty {  
 return nil  
 } else {  
 let randomIndex = Int(arc4random_uniform(UInt32(cards.count)))  
 return cards[randomIndex]  
 }  
}

• Explain how the optional Flashcard? type represents a "wrapped" value that will
either be nil or a Flashcard when unwrapped.

• Discuss how the randomCard method has no parameters, only does the necessary
work to return a value, and "feels" like a property of a Deck.

• Replace the randomCard method with a computed property.

var randomCard: Flashcard? { 
 if cards.isEmpty {  
 return nil  
 } else {  
 return cards[Int(arc4random_uniform(UInt32(cards.count)))]  
 }  
}

• Discuss the similarities and differences between methods and read-only computed
properties.

• In TermController, update the implementation of viewDidLoad to draw a
randomCard, and use that card to update the text label.

override func viewDidLoad() { 
 super.viewDidLoad()  
 if let flashcard = deck.randomCard {  
 termLabel.text = flashcard.term  
 }  
}

• Discuss the use of optional binding when accessing the randomCard property.

• Run the app (⌘R), and observe the random card term on the screen. Tap the

Definition button, observe how the default text view text appears, and navigate
back to the first view controller.

Closing

What do you think would happen in our app if we had kept the naive implementation
of randomCard? What if our app was loading terms and definitions from an external
data source, and the loading of the data failed, resulting in an empty Deck?

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

Flashcards Lesson 4

�

Modifications and Extensions

• Add a parameterized initializer to the Deck class. Enable the controller to declare a

dictionary of card data and pass it to this new Deck initializer.

Resources

View Controller Basics https://developer.apple.com/library/ios/featuredarticles/
ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html

UIViewController Class Reference https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIViewController_Class/index.html

The Swift Programming Language: Properties https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html

The Swift Programming Language: Methods https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html

The Swift Programming Language: Computed Properties https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/Properties.html#//apple_ref/doc/uid/TP40014097-
CH14-ID259

The Swift Programming Language: Conditional Statements https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/ControlFlow.html#//apple_ref/doc/uid/TP40014097-
CH9-ID127

The Swift Programming Language: Subscripts https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/Subscripts.html

The Swift Programming Language: Optionals https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html#//
apple_ref/doc/uid/TP40014097-CH5-ID330

BSD Library Functions Manual: ARC4RANDOM(3) https://developer.apple.com/
library/mac/documentation/Darwin/Reference/ManPages/man3/arc4random_uniform.
3.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIViewController_Class/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html#//apple_ref/doc/uid/TP40014097-CH14-ID259
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ControlFlow.html#//apple_ref/doc/uid/TP40014097-CH9-ID127
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Subscripts.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID330
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man3/arc4random_uniform.3.html

