
Teaching App Development with Swift

Gesturizer Lesson 4

�

Gesturizer
Lesson 4

Description

Use an additional closure to control the fading out of
the gesture label.

Learning Outcomes

• Practice using Swift closure syntax.

• Discover how closures may call methods that pass

additional closures as arguments.

• Recognize the Swift syntax for closures that receive

an argument when invoked.

• Discover how the underscore character can represent

an ignored parameter name.

• Combine different forms of Swift closure expression

syntax to express a problem solution.

Vocabulary

Materials

• Gesturizer Lesson 4 Xcode project

• Closures presentation

alpha transparency UIView closure

type annotation parameter return type

Void closure body underscore

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

Gesturizer Lesson 4

�

Opening

How can we ensure that the label fades both in and out for each gesture?

Agenda

• Discuss the existing implementation of showGestureName:, and how, during the first

invocation, the label starts as transparent and animates to full opacity; yet for
subsequent invocations the label "animates," but from full opacity to full opacity.

• Using the Xcode Documentation and API Reference (⇧⌘0), explore the UIView class
reference and the animateWithDuration:animations:completion: class method.

• Update the implementation of showGestureName:.

func showGestureName(name: String) { 
 self.gestureName.text = name  
 UIView.animateWithDuration(1.0,  
 animations: { self.gestureName.alpha = 1.0 },  
 completion: { (finished) -> Void in  
 self.gestureName.alpha = 0  
 })  
}

• Explain how the method animateWithDuration:animations:completion: accepts a
second closure, which will execute when the animations: closure is complete.

• Explain how the second completion: closure expression is different from the first, in
that it will receive a single Bool argument when invoked.

• Present the concept of closures (if necessary).

• Discuss how the completion: closure expression declares an explicit Void return

type and a finished parameter that the closure body does not use.

• Modify the implementation of the completion: closure expression.

UIView.animateWithDuration(1.0, 
 animations: { self.gestureName.alpha = 1.0 },  
 completion: { _ in self.gestureName.alpha = 0 })

• Explain the underscore, in this context, as a Swift convention for an ignored
parameter name.

• Run the app (⌘R), tap the screen, and observe the label fade in and then quickly
disappear.

• Discuss how the completion: closure sets the label alpha attribute to 0, which
causes the label to immediately disappear.

• Discuss what may be necessary in the completion: closure expression is another
UIView animation.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

Gesturizer Lesson 4

�

• Update the implementation of showGestureName:.

func showGestureName(name: String) { 
 self.gestureName.text = gestureName  
 UIView.animateWithDuration(1.0,  
 animations: { self.gestureName.alpha = 1.0 },  
 completion: { _ in  
 UIView.animateWithDuration(1.0) { self.gestureName.alpha = 0 }  
 })  
}

• Discuss how the first closure expression, passed as the animations: argument,
handles the fading in of the label; and how the animation within the completion:
closure expression handles the fading out of the label.

• Run the app (⌘R), tap the screen, and observe the label fade in and out.

Closing

What happens when we double-tap slowly? Do you see the conflict in our animation?
Why do you think it is occurring?

Modifications and Extensions

• Explore the label's transform attribute, the CGAffineTransformMakeScale structure,

and the CGAffineTransformIdentity constant. Implement a transformation effect
that makes the label appear to fade into or out from the screen, and continues to
work with subsequent gestures.

Resources

UIKit User Interface Catalog: About Views https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/UIKitUICatalog/index.html

UIView Class Reference https://developer.apple.com/library/ios/documentation/UIKit/
Reference/UIView_Class/index.html

The Swift Programming Language: Closures https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/UIKitUICatalog/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIView_Class/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

