
Teaching App Development with Swift

NoiseMaker Lesson 9

�

NoiseMaker 
Lesson 9 

Description

Assign values to each button Tag attribute, and bind 
each button to a single controller action.


Learning Outcomes

• Compare different solutions to a particular 

programming problem.

• Practice using the Attributes Inspector and 

Connections Inspector to modify view attributes and 
connections.


• Discover the Tag attribute of view elements, and apply 
the tag property to distinguish one interface element 
from another in code.


Vocabulary


Materials

• NoiseMaker Lesson 9 Xcode project


Opening

Can you think of a way we can connect each button to a single controller action that 
plays a different sound depending on which button is tapped?


UIButton UIView tag property

Attributes Inspector Tag attribute controller action

Connections Inspector parameter argument

� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�1



Teaching App Development with Swift

NoiseMaker Lesson 9

�

Agenda

• Discuss how one might connect the four buttons to one ViewController method 

that uses an if-else statement to determine which button was tapped.

• Discuss how each ViewController action sender argument could be compared to 
UIButton objects that are ViewController outlet properties.


• Discuss how the above approaches would increase the amount of code, yielding 
little benefit.


• Using the Xcode Documentation and API Reference (⇧⌘0), view the UIButton class 
reference and notice that it descends from UIView.


• Using the Xcode Documentation and API Reference (⇧⌘0), view the UIView class 
reference and observe the tag property.


• Using Interface Builder, select a button and view the Attributes Inspector (⌥⌘4).

• Discuss the Tag attribute in the View section of the Attributes Inspector (⌥⌘4).

• Using the Attributes Inspector (⌥⌘4), assign each button a Tag value that 

corresponds to the AVAudioPlayer indices in the model players array property (e.g., 
Guitar is 0, Applause is 1, Monster is 2, Bubbles is 3).


• Using the Connections Inspector (⌥⌘6), delete each button's connection to the 
respective controller action.


• Using the Assistant Editor (⌥⌘↩), replace the four controller actions with one new 
playSound: action.


@IBAction func playSound(sender: UIButton) { 
 // play the right sound  
} 

• Using Interface Builder and the Assistant Editor (⌥⌘↩), Control-drag from each 
button to the single playSound: method to establish action connections.


• Implement the playSound: method to call the NoiseMaker model play: method, 
passing the sender parameter tag property value as the argument.


@IBAction func playSound(sender: UIButton) { 
 noiseMaker.play(sender.tag)  
} 

• Explain that the value entered for the Tag attribute in Interface Builder is accessible 
via the tag property.


• Run the app (⌘R), tap the buttons and verify that the sounds still play.

• Discuss the significant reduction of code in both the model and controller.


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�2



Teaching App Development with Swift

NoiseMaker Lesson 9

�

Closing

How else might we customize our button attributes, especially to make them look 
more fun?


Modifications and Extensions

• Analyze the changes necessary if one were to add an additional button and sound 

to the app. Add another button and audio file to the project. Describe the subtle 
dependencies between the user interface and the model, and summarize what code 
needed to change.


• Consider how the size of the model's AVAudioPlayer array is coupled to the number 
of buttons and the corresponding tag values. Take a programmatic approach to 
creating the view, generating buttons depending on the size of the NoiseMaker 
players array.


Resources

Managing a User Interface Object's Connections https://developer.apple.com/library/
ios/recipes/xcode_help-IB_connections/chapters/Connections.html

UIKit User Interface Catalog: Buttons https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/UIKitUICatalog/UIButton.html

UIButton Class Reference https://developer.apple.com/library/ios/documentation/
UIKit/Reference/UIButton_Class/index.html

UIView Class Reference https://developer.apple.com/library/ios/documentation/UIKit/
Reference/UIView_Class/index.html

Creating an Action Connection https://developer.apple.com/library/ios/recipes/
xcode_help-IB_connections/chapters/CreatingAction.html

Interface Builder Help: Configuring Object Attributes https://developer.apple.com/
library/ios/recipes/xcode_help-IB_objects_media/Chapters/ObjectAttributes.html


� 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.


�3

https://developer.apple.com/library/ios/recipes/xcode_help-IB_connections/chapters/Connections.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/UIKitUICatalog/UIButton.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIButton_Class/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIView_Class/index.html
https://developer.apple.com/library/ios/recipes/xcode_help-IB_connections/chapters/CreatingAction.html
https://developer.apple.com/library/ios/recipes/xcode_help-IB_objects_media/Chapters/ObjectAttributes.html

