
Teaching App Development with Swift

RSSReader Lesson 6

�

RSSReader
Lesson 6

Description

Implement the retrieval and parsing of an RSS feed to
display song information.

Learning Outcomes

• Explain what an RSS feed is, and generalize the

structure of XML and JSON data formats.

• Discover how an iOS app may obtain RSS data with

an http request.

• Describe the use of NSURLRequest, NSURLConnection,
NSJSONSerialization, and NSDictionary classes to
inspect RSS feed data.

• Describe the behavior of asynchronous method calls,
and relate asynchronous method calls to retrieving
data over a network.

• Observe how closures may be passed to methods and
invoked by the receiving method.

Vocabulary

RSS feed HTTP URL

NSURL request NSURLRequest

NSURLConnection asynchronous method closure

XML JSON dictionary

NSDictionary type casting optional binding

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

RSSReader Lesson 6

�

Materials

• RSSReader Lesson 6 Xcode project

• Internet connectivity to the ax.itunes.apple.com domain

• RSS sample data text file (sampledata.rss.txt)

• Asynchronous Methods presentation

• Closures presentation

Opening

How can we obtain data from RSS feeds and display the data in our views?

Agenda

• Using a web browser, explore the Apple RSS feeds page: http://www.apple.com/

rss/.

• Click on the Top 10 Songs link, and observe the xml output.

• Using the web browser, modify the url in the address bar, replacing limit=10 with
limit=1 and replacing /xml with /json, and observe the output displayed within the
browser.

• Present the RSS sample data text file if necessary.

• Explain how XML and JSON are simple structured data formats.

• Discuss how the RSS data can also be obtained from an iOS app by making a

similar http request, and traversing the data structure.

• Update the TopMediaController viewDidLoad implementation with an extraction of

the JSON data.

override func viewDidLoad() { 
 super.viewDidLoad()  
 let feedURL = "http://ax.itunes.apple.com/WebObjects/MZStoreServices.woa/ws/
RSS/topsongs/limit=1/json" 
 let request = NSURLRequest(URL: NSURL(string: feedURL)!)  
 NSURLConnection.sendAsynchronousRequest(request,  
 queue: NSOperationQueue.mainQueue()) { response, data, error in  
 if let jsonData = data,  
 feed = (try? NSJSONSerialization.JSONObjectWithData(jsonData,  
 options: .MutableContainers)) as? NSDictionary,  
 title = feed.valueForKeyPath("feed.entry.im:name.label") as? String,  
 artist = feed.valueForKeyPath("feed.entry.im:artist.label") as? String {  
 self.titleLabel.text = title  
 self.artistLabel.text = artist  
 }  
 }  
}

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

http://www.apple.com/rss/

Teaching App Development with Swift

RSSReader Lesson 6

�

• Run the app (⌘R), observe how the default label text appears briefly, and how the
song title and artist names then appear.

• Explain how http requests for RSS data can be represented with an NSURLRequest
object, and how the NSURL argument uses forced unwrapping.

• Explain how a request is sent to a server asynchronously with the NSURLConnection
sendAsynchronousRequest:queue:completionHandler: method.

• Present the concept of asynchronous methods.

• Explain how the queue: parameter specifies the context of the run loop that the

closure should execute within, and the best practice of using the mainQueue to
execute blocks that update the interface.

• Discuss how the default labels in the view appear while the request for RSS data is
sent asynchronously, and how the completionHandler: argument specifies a closure
that is invoked once the data is obtained from the server.

• Present the concept of closures.

• Explain how, once the RSS data is retrieved, the closure casts the data to an
NSDictionary, and uses multiple optional bindings to navigate the structured RSS
data to obtain the specific pieces of data used by the app.

• Discuss what we might see on the screen when the song title is very long.

• Modify the implementation of viewDidLoad to simulate an arbitrarily long song title.

... 
self.titleLabel.text = "A Very Long Song Title (Long Title Remix)" 
...

• Run the app (⌘R), and observe that the song title does not fit within the bounds of
the screen.

• Using Interface Builder, select the Title label within the Top Song scene, and use the
Attributes Inspector (⌥⌘4) to set the Autoshrink attribute to a Minimum Font Size
of 10.

• Discuss how labels must have width constraints in order to infer when text content
should shrink.

• Using Interface Builder, select the Title label within the Top Song scene and drag its
left and right edges to the margin guides within the containing view.

• Add leading and trailing edge constraints to the Title label by Control-dragging both
leftward and rightward from the label to the containing view.

• Repeat the modification of each Title label Autoshrink attribute and the addition of
constraints within each scene.

• Run the app (⌘R), and observe that the song title text size appears smaller, to
accommodate the longer song title.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

RSSReader Lesson 6

�

• Run the app again (⌘R) and observe the default Title label text appearing, and
discuss how the data is still being retrieved before the label text is updated by the
controller.

• Explain how the labels are updated with data once the completionHandler: closure
is invoked.

• Using Interface Builder, select each text label, use the Attributes Inspector (⌥⌘4) to
ensure the Hidden attribute is checked, and observe how the labels appear lighter
within the canvas.

• Update the implementation of the TopMediaController viewDidLoad method to
enable the display of each label once the data is obtained.

... 
self.titleLabel.text = title 
self.titleLabel.hidden = false 
self.artistLabel.text = artist 
self.artistLabel.hidden = false 
...

• Run the app (⌘R), observe the song label text appear on the Top Song tab. Interact
with the other tabs, and notice how each view also displays the same top song
data.

Closing

What if we were requesting data that took a very long time to retrieve, perhaps due to
poor network performance? How would the user experience be affected? What
should the app do if the data can not be retrieved?

Modifications and Extensions

• Use Interface Builder to add an Activity Indicator View to each interface that

animates while the data is being retrieved, and then disappears once the view is
updated with data.

• Carry out appropriate error handling with the completionHandler: closure and the
JSONObjectWithData:options:error: methods.

• Investigate the reduce function, and use reduce to extract the data from the feed
data dictionary instead of using valueForKeyPath:.

Resources

Apple RSS Feeds http://www.apple.com/rss/

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

http://www.apple.com/rss/

Teaching App Development with Swift

RSSReader Lesson 6

�

NSURL Class Reference https://developer.apple.com/library/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSURL_Class/

NSURLRequest Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSURLRequest_Class/

NSURLConnection Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/
index.html

NSOperationQueue Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/NSOperationQueue_class/index.html

NSJSONSerialization Class Reference https://developer.apple.com/library/ios/
documentation/Foundation/Reference/NSJSONSerialization_Class/

NSDictionary Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/
index.html

The Swift Programming Language: Type Casting https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
TypeCasting.html

The Swift Programming Language: Control Flow https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
ControlFlow.html

The Swift Programming Language: Closures https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�5

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURLRequest_Class/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/NSOperationQueue_class/index.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TypeCasting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ControlFlow.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

