
Teaching App Development with Swift

RSSReader Lesson 8

�

RSSReader
Lesson 8

Description

Add an additional asynchronous method invocation to
retrieve and display the media image.

Learning Outcomes

• Repeat using an asynchronous method invocation

with NSURLRequest.

• Practice using NSURLRequest, NSURLConnection,
NSJSONSerialization, and NSDictionary classes to
inspect RSS feed data.

• Describe the behavior of asynchronous method calls,
and relate asynchronous method calls to retrieving
data over a network.

• Describe how closures may be passed to methods for
invocation.

Vocabulary

Materials

• RSSReader Lesson 8 Xcode project

• Internet connectivity to the ax.itunes.apple.com domain

RSS feed HTTP URL

NSURL request NSURLRequest

NSURLConnection asynchronous method closure

NSDictionary UIImageView UIImage

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

RSSReader Lesson 8

�

• RSS sample data example text file (sampledata.rss.txt)

• Asynchronous Methods presentation

• Closures presentation

Opening

How can we display a thumbnail image of the media type in our views?

Agenda

• Examine the RSS feed data, drawing attention to the im:image key that contains an

array of URLs for image files.

• Open an image URL in a web browser, and observe the image that appears.

• Discuss how an image URL might be used to create another NSURLConnection that

retrieves the actual image data.

• Update the controller viewDidLoad method to retrieve the image URL from the RSS

data, create an NSURL object, and pass the NSURL to a controller method that will
asynchronously retrieve the image.

... 
artist = feed.valueForKeyPath("feed.entry.im:artist.label") as? String, 
imageURLs = feed.valueForKeyPath("feed.entry.im:image") as? [NSDictionary] { 
 if let imageURL = imageURLs.last, 
 imageURLString = imageURL.valueForKeyPath("label") as? String { 
 self.loadImageFromURL(NSURL(string:imageURLString)!) 
 }  
 self.titleLabel.text = title 
...

• Implement the loadImageFromURL: method.

func loadImageFromURL(URL: NSURL) { 
 let request = NSURLRequest(URL: URL)  
 NSURLConnection.sendAsynchronousRequest(request,  
 queue: NSOperationQueue.mainQueue()) { response, data, error in  
 if let imageData = data {  
 self.imageView.image = UIImage(data: imageData)  
 } 
 }  
}

• Discuss the similarities between loadImageFromURL: and the RSS data retrieval in
viewDidLoad.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

RSSReader Lesson 8

�

• Explain how a request is sent to a server with the NSURLConnection
sendAsynchronousRequest:queue:completionHandler: method.

• Present the concept of asynchronous methods.

• Discuss how the queue: parameter specifies the run loop that the closure should

execute within, and the best practice of using the mainQueue to execute closures
that update the interface.

• Discuss how the view appears while the request for RSS data is sent
asynchronously, and how the completionHandler: argument specifies a closure that
is invoked once the data is obtained from the server.

• Present the concept of closures.

• Discuss how, once the image data is retrieved, the completionHandler: closure

instantiates a UIImage object, and assigns it to the controller imageView.image
property.

• Run the app (⌘R), interact with each tab, and observe the title, artist and image
appear in each view.

Closing

Why does each view take a moment to appear the first time the tab is selected, but
not for subsequent appearances?

How might you extract a link from the RSS data and enable the user to view the
song, album, app or movie on the App Store?

What models are missing from our app, and what should they encapsulate?

If the data takes a long time to retrieve, how might you add a progress indicator to
display in each view while the data is being retrieved?

What happens if the top media in the RSS feed changes and the app has not been
restarted? How might you implement a feature that ensures that the data is the most
current?

What other RSS feeds are there, and how might you incorporate their data into an
app?

How should the app behave when the data is not available, or if no network
connection is present?

Modifications and Extensions

• Use appropriate error handling in loadImageFromURL: to ensure the app is as robust

as possible.

• Investigate how a user might be able to customize the tabs of the app.

• Enable the user to tap on each image, which displays the media in the iTunes store

or App Store.

• Add a MediaItem model to the app that encapsulates the data retrieval.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

RSSReader Lesson 8

�

• Enable the user to refresh the data in the app.

• Investigate how to preserve app view state when the app is quit and is restarted,

such that the same tab is visible when the app starts.

Resources

Apple RSS Feeds http://www.apple.com/rss/

NSURL Class Reference https://developer.apple.com/library/ios/documentation/
Cocoa/Reference/Foundation/Classes/NSURL_Class/

NSURLRequest Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSURLRequest_Class/

NSURLConnection Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/
index.html

NSOperationQueue Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/NSOperationQueue_class/index.html

NSJSONSerialization Class Reference https://developer.apple.com/library/ios/
documentation/Foundation/Reference/NSJSONSerialization_Class/

NSDictionary Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/
index.html

The Swift Programming Language: Type Casting https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
TypeCasting.html

The Swift Programming Language: Control Flow https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
ControlFlow.html

The Swift Programming Language: Closures https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html

UIImageView Class Reference https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIImageView_Class/index.html

UIImage Class Reference https://developer.apple.com/library/ios/documentation/
UIKit/Reference/UIImage_Class/

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

http://www.apple.com/rss/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURLRequest_Class/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURLConnection_Class/index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/NSOperationQueue_class/index.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/index.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TypeCasting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ControlFlow.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIImageView_Class/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIImage_Class/

