
Teaching App Development with Swift

Stopwatch Lesson 7

�

Stopwatch
Lesson 7

Description

Refactor the elapsed time formatting into a model
property, and make the frequently changing elapsed
time label accommodate assistive devices.

Learning Outcomes

• Recognize user diversity and the concept of

accessibility, and describe accessibility features of
iOS.

• Recognize the principle of "separation of concerns"
between controllers and models, and apply refactoring
to properly abstract model concerns.

• Assess a working application and formulate additional
features related to usability and accessibility.

Vocabulary

Materials

• Stopwatch Lesson 7 Xcode project

• Apple Accessibility web resources

user experience accessibility assistive device

Identity Inspector separation of concerns refactor

computed property

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

Stopwatch Lesson 7

�

Opening

Without enhancing its functionality, what subtle improvements might we make to our
app?

Agenda

• Present the concepts of user diversity, user experience, and accessibility with the

Apple Accessibility web resources.

• Explain how assistive devices notify the user of changes in the view. Consider how

frequently the view is changing while the Stopwatch is running, and how this might
cause an excessive number of notifications to assistive devices.

• Using Interface Builder, select the elapsed time label and use the Identity Inspector
(⌥⌘3) to check the Accessibility > Updates Frequently trait, and uncheck the User
Interaction Enabled trait.

• Discuss the numerous print calls in the code, and how using customized
breakpoints is a better approach.

• Delete the remaining print calls in the ViewController implementation.

• Discuss how the creation of individual time components in the ViewController
updateElapsedTimeLabel: method sounds more like a concern of the Stopwatch
model.

• Extract the formatted String generation and time component code from the
ViewController updateElapsedTimeLabel: method into a new computed property in
the Stopwatch class.

var elapsedTimeAsString: String { 
 return String(format:"%02d:%02d.%d",Int(elapsedTime / 60),  
 Int(elapsedTime % 60), Int(elapsedTime * 10 % 10))  
}

• Discuss the computed property syntax.

• Update the ViewController updateElapsedTimeLabel: method to use the new
elapsedTimeAsString property.

func updateElapsedTimeLabel(timer: NSTimer) { 
 if stopwatch.isRunning {  
 elapsedTimeLabel.text = stopwatch.elapsedTimeAsString  
 } else {  
 timer.invalidate()  
 }  
}

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

Stopwatch Lesson 7

�

• Discuss how the updateELapsedTimeLabel: method now relies on the Stopwatch
elapsedTimeAsString property, rather than formatting the elapsed time itself.

• Run the app (⌘R), and observe that the functionality has not changed.

• Discuss the read-only nature of the Stopwatch model's computed isRunning

property, and how it is impossible to explicitly set isRunning to false after starting a
Stopwatch.

• Discuss how the private access modifier of the startTime property is important,
preventing the ability to directly access or modify the Stopwatch startTime property.

• Discuss the lack of a Reset button, but how the Start button restarts the elapsed
time.

• Discuss how the Start, Stop and reset functionalities exist, and discuss if the user
experience is good enough or not.

• Discuss how usability, user experience and accessibility might further improve.

Closing

What other features could we add to our Stopwatch app?

Modifications and Extensions

• Enhance the user interface by changing the colors of the buttons depending on the

model state.

• Investigate key-value-observing and how the model might notify the controller to

update the elapsed time label instead of using an NSTimer.

• Design additional features to enhance the usability, accessibility and value of the

app.

Resources

Accessibility for iOS Developers https://developer.apple.com/accessibility/ios/

Accessibility Programming Guide for iOS: Making Your App Accessible https://
developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
iPhoneAccessibility/Making_Application_Accessible/
Making_Application_Accessible.html

Cocoa Core Competencies: Accessibility https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/

Cocoa Core Competencies: Model Object https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

https://developer.apple.com/accessibility/ios/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Making_Application_Accessible/Making_Application_Accessible.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/ModelObject.html

Teaching App Development with Swift

Stopwatch Lesson 7

�

The Swift Programming Language: Computed Properties https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/Properties.html#//apple_ref/doc/uid/TP40014097-
CH14-ID259

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html#//apple_ref/doc/uid/TP40014097-CH14-ID259

