
Teaching App Development with Swift

UnitConverter Lesson 11

�

UnitConverter
Lesson 11

Description

Load and display the last selected temperature when
the app is brought to the foreground.

Learning Outcomes

• Practice using Xcode breakpoints to inspect an app

during runtime.

• Devise a flow of control using Boolean logic, given a

problem statement.

• Practice learning about APIs using documentation.

• Observe the Swift type cast syntax.

• Apply optional binding to perform conditional logic to

fulfill a feature requirement.

Vocabulary

Materials

• UnitConverter Lesson 11 Xcode project

life cycle method breakpoint NSUserDefaults

AnyObject? optional downcasting

as? nil optional binding

if let

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�1

Teaching App Development with Swift

UnitConverter Lesson 11

�

Opening

How and when should the app load the last selected temperature?

Agenda

• Discuss where in the codebase the last selected temperature should be loaded.

• Experiment with placing custom breakpoints within the app and controller life cycle

methods, especially viewDidLoad, to determine the best time to load the saved
picker view row index.

• Refactor viewDidLoad to use an initialPickerRow method, instead of a local
variable, to determine the initial selected row index of the picker view.

override func viewDidLoad() { 
 super.viewDidLoad()  
 let row = initialPickerRow()  
 celsiusPicker.selectRow(row, inComponent: 0, animated: false)  
 pickerView(celsiusPicker, didSelectRow: row, inComponent: 0)  
}  
 
func initialPickerRow() -> Int { 
 // load from user defaults  
 // if we obtained a last-known row index, return it  
 // otherwise, return the default.  
 return celsiusPicker.numberOfRowsInComponent(0) / 2  
}

• Using the Xcode documentation and API Reference (⇧⌘0), explore the
NSUserDefaults integerForKey: method, and observe how it returns 0 when a value
for the provided key is not found.

• Implement a naive initialPickerRow method.

func initialPickerRow() -> Int { 
 let savedRow = NSUserDefaults.standardUserDefaults()  
 .integerForKey(userDefaultsLastRowKey)  
 if savedRow != 0 {  
 return savedRow  
 } else {  
 return celsiusPicker.numberOfRowsInComponent(0) / 2  
 }  
}

• Run the app (⌘R), select a temperature, force quit the app via the multitasking bar
(⇧⌘H), restart the app, and witness the last selected temperature is correctly
displayed.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�2

Teaching App Development with Swift

UnitConverter Lesson 11

�

• With the app still running, discuss what will happen if the user selects the first
temperature in the picker view (e.g. -100) and restarts the app.

• Run the app (⌘R), select the first temperature in the picker view, force quit the app
via the multitasking bar (⇧⌘H), restart the app, and witness that the default
temperature is selected instead of the last selected temperature.

• Using the Xcode documentation and API Reference (⇧⌘0), explore the
NSUserDefaults objectForKey: method, and observe how it returns an AnyObject?
type.

• Discuss how objectForKey: will return an object representing the saved value, or
nil when the provided key is not found.

• Update the implementation of initialPickerRow.

func initialPickerRow() -> Int { 
 let savedRow = NSUserDefaults.standardUserDefaults()  
 .objectForKey(userDefaultsLastRowKey) as? Int  
 if let row = savedRow {  
 return row  
 } else {  
 return celsiusPicker.numberOfRowsInComponent(0) / 2  
 }  
}

• Explain how objectForKey: returns an AnyObject? optional, and the use of the as?
type cast operator to downcast to an Int?.

• Discuss how savedRow will be an Int? optional that wraps either an Int value or nil,
and how the optional binding of row results in returning the Int value wrapped by
savedRow, or results in returning the default row when savedRow does not contain a
value.

• Run the app (⌘R), select the first temperature in the picker view, force quit the app
via the multitasking bar (⇧⌘H), restart the app, and witness that the last selected
temperature is correctly displayed.

Closing

What other features do you think we could add to the app to make it more useful or
more fun to use? What about converting other units, such as monetary exchange
rates? Or toggling the conversion from Fahrenheit to Celsius?

Modifications and Extensions

• Explore the NSUserDefaults class reference and discover what types of values an

app can store and retrieve easily.

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�3

Teaching App Development with Swift

UnitConverter Lesson 11

�

• Investigate Core Data, and determine why using Core Data is appropriate or
inappropriate for persisting the user's preferences.

• Change the color of the converted temperature depending on how hot or cold the
temperature is.

• Add a button to the interface to "flip" the conversion to Fahrenheit to Celsius.

• Add a Tab-Bar Controller to the app, and implement additional views for converting

other units of measure.

• Investigate how to access actual weather data to set the default displayed

temperature to the real current temperature outside.

Resources

Preferences and Settings Programming Guide https://developer.apple.com/library/
ios/documentation/Cocoa/Conceptual/UserDefaults/

NSUserDefaults Class Reference https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/

The Swift Programming Language: Type Casting for Any and AnyObject https://
developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/TypeCasting.html#//apple_ref/doc/uid/TP40014097-
CH22-ID342

The Swift Programming Language: Downcasting https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/Swift_Programming_Language/
TypeCasting.html#//apple_ref/doc/uid/TP40014097-CH22-ID341

The Swift Programming Language: Optional Binding https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID333

Start Developing iOS Apps Today: Finding Information https://developer.apple.com/
library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

�

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, by Yong Bakos.

�4

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TypeCasting.html#//apple_ref/doc/uid/TP40014097-CH22-ID342
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TypeCasting.html#//apple_ref/doc/uid/TP40014097-CH22-ID341
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID333
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/FindingInformation.html

